

DevOpsDaysDC 2019
@devopsdaysdc

2019-07-08

A Software Engineer's Guide to DevOps

Laurie Barth
https://devopsdays.org/events/2019-washington-dc/program/laurie-barth/

● Twitter - https://twitter.com/laurieontech
● Video Recording - https://youtu.be/8VIC28AeTw8
● Slides -

https://www.slideshare.net/LaurieBarth/a-software-engineers-guide-to-devops-keynote
● Audio - http://traffic.libsyn.com/devopsdays/software-engineers-guide-to-devops.mp3

LAURIE: Hi, everyone. It's so nice to be here. I have this cool opportunity to talk to everyone at

once I want you to give a quick round of applause for organizers and the volunteers and the

sponsors. It takes a whole lot to put on a conference.

[Applause]

I appreciate you all being here and not drowning on the way. Kudos. I'm here to talk about a

software engineer's guide to DevOps. I'm Laurie Barth. You can follow me@Laurie on tech and

I'm a software engineer for a company called Ten Mile Square technologies. And the reason I

say that up top is not as a sales pitch, but we're a small company that works with companies big

and small to solve whatever problems they have. And that means that I wear a lot of hats. And

I kind of learn and do whatever it is that our clients need. And about a year ago, whatever they

needed, was DevOps. So over the course of six months, I dived in to everything I could, context

and vocabulary and tools and all of that. Quick question for the room. How many of you are

DevOps engineers? Okay. So 50/50. There's a version of this talk that introduces you to what

DevOps is. But that didn't really seem like the right fit for this crowd. So instead we're going to

follow on what's on the back of our T-shirts with a house divided cannot stand and we'll get into

that now.

 So I'm going to be honest. As a software engineer, I haven't had the best of experiences with

this thing they call DevOps. One story in particular sticks out. A few years ago I was working

for a company, and the process worked like this. I would write code and in order to test it, I

needed to test it with the full data set. And the full data set required some amount of manual

testing. I wrote code, I committed it to git, I pushed it, and then Jenkins would take over, do an

automatic build for me. I would SSH into the QA box, I would do a simple command and it

Captioning by White Coat Captioning DevOpsDaysDC 2019 1 of 8

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://devopsdays.org/events/2019-washington-dc/program/laurie-barth/
https://twitter.com/laurieontech
https://youtu.be/8VIC28AeTw8
https://www.slideshare.net/LaurieBarth/a-software-engineers-guide-to-devops-keynote
http://traffic.libsyn.com/devopsdays/software-engineers-guide-to-devops.mp3
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/

DevOpsDaysDC 2019
@devopsdaysdc

2019-07-08

would pull the most recent build on to that box. Not too bad. Well, one day it didn't work out

quite that way. Instead of success, the new builds on the box, I got a message that said this

random file that you've never seen or heard of is locked. So I tried to do what I could and I had

no permissions on that machine. That meant I had to track down the operations person that I

knew. And he wasn't at his desk, because he was pulled in about a million different directions.

So two hours later, two hours of being blocked, I finally get ahold of him. All he has to do is log

on to the box, delete the files, say try again, everything is good to go. Sound familiar? Does

that sound like developers trying to track you down? Now, the next story is not mine, it's a

friend of mine. And full disclosure, I had no idea they were a sponsor until just this morning. So

we're going to go easy. So she was working on a project for a client and she was integrating

with a very specific version of elastic search. The operations team at the company had set up

an environment where that version of elastic search was running. She came in one morning

and the elastic search version had jumped. It needed to be pinned to a specific version. Luckily

she had permissions, she spent the day dealing with versioning we all know how much of that a

nightmare that could be. She comes back to the office, the elastic search version has jumped

again and she calls up the operations team and says hey, what is going on. And they say, oh, it

must be Chef. She has no idea what that means, and for those of you who don't know, Chef is

a configuration management tool and you define your configuration using a recipe, very clever.

And at some time interval, they check against each other, and if the running environment

doesn't match the recipe, the recipe wins. Which is why she had great permissions to change

whatever she wanted, because they didn't care. It was going to get overwritten anyway. So she

goes to try and figure out what the heck they mean when they say it must be Chef. She gets a

lot of marketing mumbo-jumbo, she gets a lot of terms she's never heard of and can't make

sense of and she says okay, I'm going to throw me hands up and wait for them to fix it and I'll be

blocked as long as they do. Sound familiar? Does this sound like kind of the push and pull that

you experience with developers? In my prior experience, before I learned about this thing called

DevOps, my interaction with DevOps went a little bit like this. I wrote code, I pushed it to Git,

probably merged it into some major branch or the trunk. I waited for Jenkins to pick it up and

build it. And then I threw it over a wall. I had no idea what happened on the other side of that

wall. I didn't really want to know. It sounded confusing and obnoxious and slightly evil. And so

the wall stood between me and operations and I knew my side. And this created kind of this

natural tension that I think exists with a lot of teams, between developers and operations and it's

what this culture of DevOps is supposed to help remediate. And the tension comes from a few

Captioning by White Coat Captioning DevOpsDaysDC 2019 2 of 8

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/

DevOpsDaysDC 2019
@devopsdaysdc

2019-07-08

places. One of the things that I think makes a big difference is this lack of knowledge. As a

developer, I don't know the tools. I don't know the context, I don't know the considerations at

play. In fact, the only thing I see is constraints. To me, it's a bunch of rules that I need to follow

to make sure that I don't break things. A box that I need to fit into. And that lack of knowledge,

and the idea that this is all kind of making my job harder, leads to frustration. On both sides.

Both on the operations side of the coin and the developer side of the coin. That wall. And it

silos us so we don't want to understand the other side of the coin. Developers in particular

throw their hands up and say I don't have permissions, I don't have access, I don't understand

any of this, I'm not going to get involved. And I kind of picture this like two siblings on either

corner of a wall with their arms crossed, being like you make my job harder, no, you make my

job harder. So for developers, it's this mentality of, I just need it to work. I know my code is

broken. I don't know how. I don't know what I don't know. So I need to get it on this box, I need

to put it on this environment to see what these other variables are going to do to code that I pray

is working but who knows? And DevOps is standing there saying stop breaking things. You

avoid too much freedom, you get the run of this whole place, and all you do is make more

problems for me. So how do we solve this? They gave me that nice intro at the beginning, tear

down that wall!

How do we work towards the same goals? Because we have the same goals. A house divided

cannot stand. This theming is working great for me today. I thought about this a lot. And one

of the things that occurred to me is that we're all engineers. Our meta goals are different in

terms of what our focus area is, but we all have similar justifications and motivations. So what

about this novel concept of treating each other like engineers? What would that look like?

What would that do? What would that change?

 Engineers have something in common, regardless of what their focus area is. They want to

know the why. They're not satisfied with just being told to do something. They want to

understand why they're doing it, and how it works. So for DevOps, that has a lot of different

ways to view it.

 That can be, I need to know the edge cases; that can be I need to know what your

environment needs. But what it really is, it comes down to what are the risks. What do I need

to be aware of to make sure that this thing doesn't blow up in my hands. Because you don't

seem to know what I need to know. And for developers, they're looking at these constraints,

they're looking at these things that they think makes their job harder. And what they really want

to know is where do I fit in? How am I a piece of this puzzle? What does this process look like,

Captioning by White Coat Captioning DevOpsDaysDC 2019 3 of 8

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/

DevOpsDaysDC 2019
@devopsdaysdc

2019-07-08

and what am I doing to make it easier or harder? Because this is the crazy part. The reality is

that developers' lives are made easier by DevOps. It's a bit of hyperbole but no one is going to

care about their code quite as much as developers do. Their blood sweat and tears for weeks,

months or years went into making these applications. They care all of this effort wasn't for

naught. That it serves its purpose, that it does what they built it to do. They didn't spend all this

time combing through bugs in a back room for people to get a blank screen. DevOps matters to

them. They just might not understand why. One of the first things I learned in this 6-month

journey was about CIDC pipelines and two things jumped out to me right away as something

that mattered to me as a developer. The first was between local environment and shared dev

test. In this example there's a Docker container but there's many other ways to do this, as you

all know. I can put an environment that Mick I canned QA and production directly on my

machine, that I could see everything that my application code would be touching, eliminate all

my risk, know that I'm promoting something more than dropping it into a new pond and hoping

that my fish swims.

 The other thing that CI CD of pipelines that can do and do do that developers benefit from is

cycle time. Too often we talk about what it takes to make development go faster. And rarely is

it how smart your engineers are and how fast they can type. Most of the time it's the idea that

developers write code and pigs don't fly so it's not going to work the first time. They write code,

they test it and they iterate. How long does that process take? How much of that iteration is

them waiting around for things to build or things to deploy? What does that look like? How

much time are they waiting for to hope they can get in touch with a DevOps engineer because

they broke something?

 The other thing that I learned in the six months, was that DevOps itself has real reasons and

benefits. That's why you do the work you do. You wouldn't do it if it didn't matter. And those

reasons and benefits are things developers should know. Because it affects them too. Who

cares about code more than the ones who built it?

 The first thing that stuck out to me was repeatability. The idea that every time you're

deploying the application, you're taking it that last mile, you're making sure that it follows that

process the same way every time. And that's so important to me as a developer because I

spent all that time on the bugs. And handling the edge cases and making sure that we've

handled all our risks and the worst case scenario is every time we deploy is we're doing it a

different way and all my work is a wash. It doesn't matter. That matters to me. Scaleability. It's

always interesting to me that developers spend so much time thinking about scaleability within

Captioning by White Coat Captioning DevOpsDaysDC 2019 4 of 8

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/

DevOpsDaysDC 2019
@devopsdaysdc

2019-07-08

their own code.

They make multithreaded applications, they make calls asynchronous. DevOps goes a step

further with that. It makes sure we can have multiple instances of that application I built. It

makes sure that traffic is getting routed in the right ways and things aren't going down. The

worst-case scenario is that the code that I wrote doesn't get that last mile, it doesn't get in front

of a customer. It doesn't matter how good of a job I did if it can't get there, it makes no

difference. This matters to me. This is one of my favorite m oh meme cartoon things. You

have had the time-honored tradition of seeing two threads running, about ten jobs waiting in the

queue and yours is the very last one. Scaleability is something developers understand really

well and this goes to that cycle time. These things affect not just the application and production,

but it affects their development experience. All of these things should matter to us as

developers.

 And automation. I know at the beginning of the conference they made the joke about who's

on call. Developers get put on call too, right? We're a part of that rotation. And I'm sure you

nor I want to be the one to miss the 2:00 a.m. email saying that everything is melting down

because we didn't scale. Automation has such a big impact on all of us. It affects on our on-call

rotations, but it also affects our ability to keep that application in front of customers, to make

sure that the work that we do matters. And failure states. DevOps is all about preventing

failure, right? It's why you do what you do. And for developers, that is the ultimate. The last

mile. I've side that about six times, but it's so important. Because too often developers think

that their job ends with their code. But their code isn't running on their local environment, so

even if they say it works on my machine, well it doesn't really apply. It doesn't help anyone. If

you care that much about your code, if you put that time and that energy and that effort in, you

want to make sure that it ends up on the screen of the person you built it for. So what does that

look like and how do we do it, and how do developers have more of a hand in being successful?

Part of this is considering everyone. There's a process and a solution and you want your

developers to be involved in it, instead of throwing things over a wall and hoping that it doesn't

have a bomb hidden in it. Part of this is tool solution. Choosing tools that work for everyone.

Choosing tools that everyone can understand, that everyone has access to, that they can be

effective in shepherding their code a little more seamlessly along a conveyor belt, instead of

jumping over a wall. What you're really trying to do is blur the lines between developers and

operations. That's why they made the DevOps name, right? And the reality is, that your

developers aren't going to become DevOps experts and you don't want them to be. Because if

Captioning by White Coat Captioning DevOpsDaysDC 2019 5 of 8

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/

DevOpsDaysDC 2019
@devopsdaysdc

2019-07-08

they try to do two things well, they're going to do neither of them well. You still want your

experts, you still want your DevOps engineers. What you're really after is having them meet in

the middle. Moving your developers just a little bit closer to your operations side, giving them

some overlap. Because that overlap allows you to do really amazing things. It allows

developers to give more relevant information as things move to the next gate. What systems

need to talk to each other? What versions of dependencies might have an impact? What level

of robustness should this application have? What kind of traffic might we expect to see? You're

allowing for these smoother hand-offs between teams, because the first team understands what

the second team needs from them. What information is relevant to their jobs, because they, at

a certain level, understand what that job is trying to do. Now I'm sure you're sitting here thinking

just because I give my developers overview of our pipeline and our process doesn't mean I'm

comfortable giving them access. And I understand that. But I caution you against it because I

think access is the only way that they're actively involved in those solutions. It's the only way

they're not calling you up to say hey, I'm locked out of this box, I can't do anything and blocked

for two hours and you're annoyed because you had six meetings today. And there's ways to do

this. And I think my experience gave me a lot of good entry points. So what's interesting to me

about DevOps versus writing code is that there aren't major differences. Your goal is very

different. But the tools that you use and the process that they use, there are a lot of parallels

between them. The most obvious is probably infrastructure as code. I found a lot of examples

of this that felt very accessible to me as a developer but one really stood out. But just to say

this up top, I'm not saying use this particular tool. It's just an example. So there's actually an

NPM package called serverless and if you go to their GitHub repository they have an entire

examples directly. In that directory, you will find pretty much every modern coding language

coupled with all of the existing AWS databases, at least as of this writing, and you will find a

cloud formation template that stands up an API gateway in that language, for that database.

How amazing is that? What I loved about it was that I know what an API looks like. I write back

end code. So for me I could look directly at that project. I could see my end points and see the

one-to-one mapping with the cloud formation template. I could understand how things were

getting deployed, what considerations there were, what I had to worry about, what the

operations side of my company had to worry about. Another thing that was incredibly helpful

was templates and GUIs and I kind of hate this mentality that we have as developers, especially

that using visual aids is training wheels and you're not hardcore if you do so. It's particularly bad

in DevOps because so much of DevOps is data visualization of how things move through a

Captioning by White Coat Captioning DevOpsDaysDC 2019 6 of 8

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/

DevOpsDaysDC 2019
@devopsdaysdc

2019-07-08

process. Or what's happening when things are live. Green versus red status, that kind of thing.

One of the things I found incredibly helpful and accessible was using the baked-in Helm

template, just the example, go into Docker hub and pull in an image of something I recognized.

I could take the name of that Docker image and the tag, and replace it in the Helm template and

run a couple simple commands. The first was minikube start. As long as I put Kubernetes on

my local machine, this was all I had to run. With the Helm template, I could run the Helm

template against it and I ended up with this. I've got a deployment, I've got a pod, I've got a

replica set. I'm not touching anything in production. It's a total playground. I got to iterate with

this and see what impacts it had. I could look at fail over, I could look at making dependencies

for databases. Everything I did gave me the opportunity to further see what I was

accomplishing and what I could accomplish. Now, you're not all using Helm or Kubernetes or

AWS or Serverless and that's okay. But these tools have a lot of similarities. They're trying to

accomplish similar ends. They have different gotchas. And allowing developers time to have a

bit of a playground, a safe space, will make them more comfortable using whatever your

pipeline consists of. And this isn't just about making a cross-functional team. It's about having

these overlaps of knowledge that we've been talking about. If developers better understand

everything you do, they can better support your requests for information, and make you doing

your job easier. They just need some context. So what does that look like? It's giving them

those entry points. It's giving them a safe place to test things out, to iterate, to look at what it is

that you're trying to accomplish, that you're trying to do day to day, to see those constraints and

how hard it is to do the jobs. The deployment zone to deploy the thing that's doing the

deployment. Mind-blowing. Helping them understand that will help them help you. It's helping

them understand where they fit in. They're engineers, just like you are. As developers we want

to know the why. We want to understand the unfamiliar terrain around us. If we get the puzzle

piece that we are, we can better see our connection points, our integration points, what points of

failure we may be creating, what risk we are introducing. And this is probably the most

important takeaway. DevOps should matter to developers. I know that once I dove into it a step

further, it became so apparent to me how integral it was to my success, and the team's success,

and the company's success. And I'm still a software engineer. I enjoy being a software

engineer. But learning DevOps has made me far more successful than I was before. Because

I'm making sure my code goes that last mile. I'm making sure I'm giving the relevant information

to the people it applies to. And if I need to jump on a box or into a Jenkins job or whatever it is, I

can probably figure it out. So thank you so much for coming. I hope you enjoy the kitten in the

Captioning by White Coat Captioning DevOpsDaysDC 2019 7 of 8

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/

DevOpsDaysDC 2019
@devopsdaysdc

2019-07-08

bow tie and enjoy the rest of the conference.

[Applause]

Captioning by White Coat Captioning DevOpsDaysDC 2019 8 of 8

https://devopsdays.org/events/2019-washington-dc/welcome/
https://twitter.com/devopsdaysdc
https://whitecoatcaptioning.com/
https://devopsdays.org/events/2019-washington-dc/welcome/

